sonic-bluestreak/sonic-bluestreak.love/birb/modules/world/libs/bump-3dpd.lua

948 lines
25 KiB
Lua
Raw Permalink Normal View History

local bump = {
_VERSION = 'bump-3dpd v0.2.0',
_URL = 'https://github.com/oniietzschan/bump-3dpd',
_DESCRIPTION = 'A 3D collision detection library for Lua.',
_LICENSE = [[
MIT LICENSE
Copyright (c) 2014 Enrique García Cota
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
]]
}
------------------------------------------
-- Auxiliary functions
------------------------------------------
local DELTA = 1e-10 -- floating-point margin of error
local abs, floor, ceil, min, max = math.abs, math.floor, math.ceil, math.min, math.max
local function sign(x)
if x > 0 then return 1 end
if x == 0 then return 0 end
return -1
end
local function nearest(x, a, b)
if abs(a - x) < abs(b - x) then return a else return b end
end
local function assertType(desiredType, value, name)
if type(value) ~= desiredType then
error(name .. ' must be a ' .. desiredType .. ', but was ' .. tostring(value) .. '(a ' .. type(value) .. ')')
end
end
local function assertIsPositiveNumber(value, name)
if type(value) ~= 'number' or value <= 0 then
error(name .. ' must be a positive integer, but was ' .. tostring(value) .. '(' .. type(value) .. ')')
end
end
local function assertIsCube(x,y,z,w,h,d)
assertType('number', x, 'x')
assertType('number', y, 'y')
assertType('number', z, 'z')
assertIsPositiveNumber(w, 'w')
assertIsPositiveNumber(h, 'h')
assertIsPositiveNumber(d, 'd')
end
local defaultFilter = function()
return 'slide'
end
------------------------------------------
-- Cube functions
------------------------------------------
local function cube_getNearestCorner(x,y,z,w,h,d, px, py, pz)
return nearest(px, x, x + w),
nearest(py, y, y + h),
nearest(pz, z, z + d)
end
-- This is a generalized implementation of the liang-barsky algorithm, which also returns
-- the normals of the sides where the segment intersects.
-- Returns nil if the segment never touches the cube
-- Notice that normals are only guaranteed to be accurate when initially ti1, ti2 == -math.huge, math.huge
local function cube_getSegmentIntersectionIndices(x,y,z,w,h,d, x1,y1,z1,x2,y2,z2, ti1,ti2)
ti1, ti2 = ti1 or 0, ti2 or 1
local dx = x2 - x1
local dy = y2 - y1
local dz = z2 - z1
local nx, ny, nz
local nx1, ny1, nz1, nx2, ny2, nz2 = 0,0,0,0,0,0
local p, q, r
for side = 1,6 do
if side == 1 then -- Left
nx,ny,nz,p,q = -1, 0, 0, -dx, x1 - x
elseif side == 2 then -- Right
nx,ny,nz,p,q = 1, 0, 0, dx, x + w - x1
elseif side == 3 then -- Top
nx,ny,nz,p,q = 0, -1, 0, -dy, y1 - y
elseif side == 4 then -- Bottom
nx,ny,nz,p,q = 0, 1, 0, dy, y + h - y1
elseif side == 5 then -- Front
nx,ny,nz,p,q = 0, 0, -1, -dz, z1 - z
else -- Back
nx,ny,nz,p,q = 0, 0, 1, dz, z + d - z1
end
if p == 0 then
if q <= 0 then
return nil
end
else
r = q / p
if p < 0 then
if r > ti2 then
return nil
elseif r > ti1 then
ti1, nx1,ny1,nz1 = r, nx,ny,nz
end
else -- p > 0
if r < ti1 then
return nil
elseif r < ti2 then
ti2, nx2,ny2,nz2 = r,nx,ny,nz
end
end
end
end
return ti1,ti2, nx1,ny1,nz1, nx2,ny2,nz2
end
-- Calculates the minkowsky difference between 2 cubes, which is another cube
local function cube_getDiff(x1,y1,z1,w1,h1,d1, x2,y2,z2,w2,h2,d2)
return x2 - x1 - w1,
y2 - y1 - h1,
z2 - z1 - d1,
w1 + w2,
h1 + h2,
d1 + d2
end
local function cube_containsPoint(x,y,z,w,h,d, px,py,pz)
return px - x > DELTA
and py - y > DELTA
and pz - z > DELTA
and x + w - px > DELTA
and y + h - py > DELTA
and z + d - pz > DELTA
end
local function cube_isIntersecting(x1,y1,z1,w1,h1,d1, x2,y2,z2,w2,h2,d2)
return x1 < x2 + w2 and x2 < x1 + w1 and
y1 < y2 + h2 and y2 < y1 + h1 and
z1 < z2 + d2 and z2 < z1 + d1
end
local function cube_getCubeDistance(x1,y1,z1,w1,h1,d1, x2,y2,z2,w2,h2,d2)
local dx = x1 - x2 + (w1 - w2)/2
local dy = y1 - y2 + (h1 - h2)/2
local dz = z1 - z2 + (d1 - d2)/2
return (dx * dx) + (dy * dy) + (dz * dz)
end
local function cube_detectCollision(x1,y1,z1,w1,h1,d1, x2,y2,z2,w2,h2,d2, goalX, goalY, goalZ)
goalX = goalX or x1
goalY = goalY or y1
goalZ = goalZ or z1
local dx = goalX - x1
local dy = goalY - y1
local dz = goalZ - z1
local x,y,z,w,h,d = cube_getDiff(x1,y1,z1,w1,h1,d1, x2,y2,z2,w2,h2,d2)
local overlaps, ti, nx, ny, nz
if cube_containsPoint(x,y,z,w,h,d, 0,0,0) then -- item was intersecting other
local px, py, pz = cube_getNearestCorner(x,y,z,w,h,d, 0,0,0)
-- Volume of intersection:
local wi = min(w1, abs(px))
local hi = min(h1, abs(py))
local di = min(d1, abs(pz))
ti = wi * hi * di * -1 -- ti is the negative volume of intersection
overlaps = true
else
local ti1,ti2,nx1,ny1,nz1 = cube_getSegmentIntersectionIndices(x,y,z,w,h,d, 0,0,0,dx,dy,dz, -math.huge, math.huge)
-- item tunnels into other
if ti1
and ti1 < 1
and (abs(ti1 - ti2) >= DELTA) -- special case for cube going through another cube's corner
and (0 < ti1 + DELTA
or 0 == ti1 and ti2 > 0)
then
ti, nx, ny, nz = ti1, nx1, ny1, nz1
overlaps = false
end
end
if not ti then
return
end
local tx, ty, tz
if overlaps then
if dx == 0 and dy == 0 and dz == 0 then
-- intersecting and not moving - use minimum displacement vector
local px, py, pz = cube_getNearestCorner(x,y,z,w,h,d, 0,0,0)
if abs(px) <= abs(py) and abs(px) <= abs(pz) then
-- X axis has minimum displacement
py, pz = 0, 0
elseif abs(py) <= abs(pz) then
-- Y axis has minimum displacement
px, pz = 0, 0
else
-- Z axis has minimum displacement
px, py = 0, 0
end
nx, ny, nz = sign(px), sign(py), sign(pz)
tx = x1 + px
ty = y1 + py
tz = z1 + pz
else
-- intersecting and moving - move in the opposite direction
local ti1, _
ti1,_,nx,ny,nz = cube_getSegmentIntersectionIndices(x,y,z,w,h,d, 0,0,0,dx,dy,dz, -math.huge, 1)
if not ti1 then
return
end
tx = x1 + dx * ti1
ty = y1 + dy * ti1
tz = z1 + dz * ti1
end
else -- tunnel
tx = x1 + dx * ti
ty = y1 + dy * ti
tz = z1 + dz * ti
end
return {
overlaps = overlaps,
ti = ti,
move = {x = dx, y = dy, z = dz},
normal = {x = nx, y = ny, z = nz},
touch = {x = tx, y = ty, z = tz},
itemCube = {x = x1, y = y1, z = z1, w = w1, h = h1, d = d1},
otherCube = {x = x2, y = y2, z = z2, w = w2, h = h2, d = d2},
}
end
------------------------------------------
-- Grid functions
------------------------------------------
local function grid_toWorld(cellSize, cx, cy, cz)
return (cx - 1) * cellSize,
(cy - 1) * cellSize,
(cz - 1) * cellSize
end
local function grid_toCell(cellSize, x, y, z)
return floor(x / cellSize) + 1,
floor(y / cellSize) + 1,
floor(z / cellSize) + 1
end
-- grid_traverse* functions are based on "A Fast Voxel Traversal Algorithm for Ray Tracing",
-- by John Amanides and Andrew Woo - http://www.cse.yorku.ca/~amana/research/grid.pdf
-- It has been modified to include both cells when the ray "touches a grid corner",
-- and with a different exit condition
local function grid_traverse_initStep(cellSize, ct, t1, t2)
local v = t2 - t1
if v > 0 then
return 1, cellSize / v, ((ct + v) * cellSize - t1) / v
elseif v < 0 then
return -1, -cellSize / v, ((ct + v - 1) * cellSize - t1) / v
else
return 0, math.huge, math.huge
end
end
local function grid_traverse(cellSize, x1,y1,z1,x2,y2,z2, f)
local cx1, cy1, cz1 = grid_toCell(cellSize, x1, y1, z1)
local cx2, cy2, cz2 = grid_toCell(cellSize, x2, y2, z2)
local stepX, dx, tx = grid_traverse_initStep(cellSize, cx1, x1, x2)
local stepY, dy, ty = grid_traverse_initStep(cellSize, cy1, y1, y2)
local stepZ, dz, tz = grid_traverse_initStep(cellSize, cz1, z1, z2)
local cx, cy, cz = cx1, cy1, cz1
f(cx, cy, cz)
-- The default implementation had an infinite loop problem when
-- approaching the last cell in some occassions. We finish iterating
-- when we are *next* to the last cell
while abs(cx - cx2) + abs(cy - cy2) + abs(cz - cz2) > 1 do
if tx < ty and tx < tz then -- tx is smallest
tx = tx + dx
cx = cx + stepX
f(cx, cy, cz)
elseif ty < tz then -- ty is smallest
-- Addition: include both cells when going through corners
if tx == ty then
f(cx + stepX, cy, cz)
end
ty = ty + dy
cy = cy + stepY
f(cx, cy, cz)
else -- tz is smallest
-- Addition: include both cells when going through corners
if tx == tz then
f(cx + stepX, cy, cz)
end
if ty == tz then
f(cx, cy + stepY, cz)
end
tz = tz + dz
cz = cz + stepZ
f(cx, cy, cz)
end
end
-- If we have not arrived to the last cell, use it
if cx ~= cx2 or cy ~= cy2 or cz ~= cz2 then
f(cx2, cy2, cz2)
end
end
local function grid_toCellCube(cellSize, x,y,z,w,h,d)
local cx,cy,cz = grid_toCell(cellSize, x, y, z)
local cx2 = ceil((x + w) / cellSize)
local cy2 = ceil((y + h) / cellSize)
local cz2 = ceil((z + d) / cellSize)
return cx,
cy,
cz,
cx2 - cx + 1,
cy2 - cy + 1,
cz2 - cz + 1
end
------------------------------------------
-- Responses
------------------------------------------
local touch = function(world, col, x,y,z,w,h,d, goalX, goalY, goalZ, filter)
return col.touch.x, col.touch.y, col.touch.z, {}, 0
end
local cross = function(world, col, x,y,z,w,h,d, goalX, goalY, goalZ, filter)
local cols, len = world:project(col.item, x,y,z,w,h,d, goalX, goalY, goalZ, filter)
return goalX, goalY, goalZ, cols, len
end
local slide = function(world, col, x,y,z,w,h,d, goalX, goalY, goalZ, filter)
goalX = goalX or x
goalY = goalY or y
goalZ = goalZ or z
local tch, move = col.touch, col.move
if move.x ~= 0 or move.y ~= 0 or move.z ~= 0 then
if col.normal.x ~= 0 then
goalX = tch.x
end
if col.normal.y ~= 0 then
goalY = tch.y
end
if col.normal.z ~= 0 then
goalZ = tch.z
end
end
col.slide = {x = goalX, y = goalY, z = goalZ}
x, y, z = tch.x, tch.y, tch.z
local cols, len = world:project(col.item, x,y,z,w,h,d, goalX, goalY, goalZ, filter)
return goalX, goalY, goalZ, cols, len
end
local bounce = function(world, col, x,y,z,w,h,d, goalX, goalY, goalZ, filter)
goalX = goalX or x
goalY = goalY or y
goalZ = goalZ or z
local tch, move = col.touch, col.move
local tx, ty, tz = tch.x, tch.y, tch.z
local bx, by, bz = tx, ty, tz
if move.x ~= 0 or move.y ~= 0 or move.z ~= 0 then
local bnx = goalX - tx
local bny = goalY - ty
local bnz = goalZ - tz
if col.normal.x ~= 0 then
bnx = -bnx
end
if col.normal.y ~= 0 then
bny = -bny
end
if col.normal.z ~= 0 then
bnz = -bnz
end
bx = tx + bnx
by = ty + bny
bz = tz + bnz
end
col.bounce = {x = bx, y = by, z = bz}
x, y, z = tch.x, tch.y, tch.z
goalX, goalY, goalZ = bx, by, bz
local cols, len = world:project(col.item, x,y,z,w,h,d, goalX, goalY, goalZ, filter)
return goalX, goalY, goalZ, cols, len
end
------------------------------------------
-- World
------------------------------------------
local World = {}
local World_mt = {__index = World}
-- Private functions and methods
local function sortByWeight(a,b)
return a.weight < b.weight
end
local function sortByTiAndDistance(a,b)
if a.ti == b.ti then
local ir, ar, br = a.itemCube, a.otherCube, b.otherCube
local ad = cube_getCubeDistance(ir.x,ir.y,ir.z,ir.w,ir.h,ir.d, ar.x,ar.y,ar.z,ar.w,ar.h,ar.d)
local bd = cube_getCubeDistance(ir.x,ir.y,ir.z,ir.w,ir.h,ir.d, br.x,br.y,br.z,br.w,br.h,br.d)
return ad < bd
end
return a.ti < b.ti
end
local function addItemToCell(self, item, cx, cy, cz)
self.cells[cz] = self.cells[cz] or {}
self.cells[cz][cy] = self.cells[cz][cy] or setmetatable({}, {__mode = 'v'})
if self.cells[cz][cy][cx] == nil then
self.cells[cz][cy][cx] = {
itemCount = 0,
x = cx,
y = cy,
z = cz,
items = setmetatable({}, {__mode = 'k'})
}
end
local cell = self.cells[cz][cy][cx]
self.nonEmptyCells[cell] = true
if not cell.items[item] then
cell.items[item] = true
cell.itemCount = cell.itemCount + 1
end
end
local function removeItemFromCell(self, item, cx, cy, cz)
if not self.cells[cz]
or not self.cells[cz][cy]
or not self.cells[cz][cy][cx]
or not self.cells[cz][cy][cx].items[item]
then
return false
end
local cell = self.cells[cz][cy][cx]
cell.items[item] = nil
cell.itemCount = cell.itemCount - 1
if cell.itemCount == 0 then
self.nonEmptyCells[cell] = nil
end
return true
end
local function getDictItemsInCellCube(self, cx,cy,cz, cw,ch,cd)
local items_dict = {}
for z = cz, cz + cd - 1 do
local plane = self.cells[z]
if plane then
for y = cy, cy + ch - 1 do
local row = plane[y]
if row then
for x = cx, cx + cw - 1 do
local cell = row[x]
if cell and cell.itemCount > 0 then -- no cell.itemCount > 1 because tunneling
for item,_ in pairs(cell.items) do
items_dict[item] = true
end
end
end
end
end
end
end
return items_dict
end
local function getCellsTouchedBySegment(self, x1,y1,z1,x2,y2,z2)
local cells, cellsLen, visited = {}, 0, {}
grid_traverse(self.cellSize, x1,y1,z1,x2,y2,z2, function(cx, cy, cz)
local plane = self.cells[cz]
if not plane then
return
end
local row = plane[cy]
if not row then
return
end
local cell = row[cx]
if not cell or visited[cell] then
return
end
visited[cell] = true
cellsLen = cellsLen + 1
cells[cellsLen] = cell
end)
return cells, cellsLen
end
local function getInfoAboutItemsTouchedBySegment(self, x1,y1,z1, x2,y2,z2, filter)
local cells, len = getCellsTouchedBySegment(self, x1,y1,z1,x2,y2,z2)
local cell, cube, x,y,z,w,h,d, ti1, ti2, tii0,tii1
local visited, itemInfo, itemInfoLen = {}, {}, 0
for i = 1, len do
cell = cells[i]
for item in pairs(cell.items) do
if not visited[item] then
visited[item] = true
if (not filter or filter(item)) then
cube = self.cubes[item]
x, y, z, w, h, d = cube.x, cube.y, cube.z, cube.w, cube.h, cube.d
ti1, ti2 = cube_getSegmentIntersectionIndices(x,y,z,w,h,d, x1,y1,z1, x2,y2,z2, 0, 1)
if ti1 and ((0 < ti1 and ti1 < 1) or (0 < ti2 and ti2 < 1)) then
-- the sorting is according to the t of an infinite line, not the segment
tii0, tii1 = cube_getSegmentIntersectionIndices(x,y,z,w,h,d, x1,y1,z1, x2,y2,z2, -math.huge, math.huge)
itemInfoLen = itemInfoLen + 1
itemInfo[itemInfoLen] = {item = item, ti1 = ti1, ti2 = ti2, weight = min(tii0, tii1)}
end
end
end
end
end
table.sort(itemInfo, sortByWeight)
return itemInfo, itemInfoLen
end
local function getResponseByName(self, name)
local response = self.responses[name]
if not response then
error(('Unknown collision type: %s (%s)'):format(name, type(name)))
end
return response
end
-- Misc Public Methods
function World:addResponse(name, response)
self.responses[name] = response
end
function World:projectMove(item, x,y,z,w,h,d, goalX,goalY,goalZ, filter)
local cols, len = {}, 0
filter = filter or defaultFilter
local visited = {[item] = true}
local visitedFilter = function(itm, other)
if visited[other] then
return false
end
return filter(itm, other)
end
local projected_cols, projected_len = self:project(item, x,y,z,w,h,d, goalX,goalY,goalZ, visitedFilter)
while projected_len > 0 do
local col = projected_cols[1]
len = len + 1
cols[len] = col
visited[col.other] = true
local response = getResponseByName(self, col.type)
goalX, goalY, goalZ, projected_cols, projected_len = response(
self,
col,
x, y, z, w, h, d,
goalX, goalY, goalZ,
visitedFilter
)
end
return goalX, goalY, goalZ, cols, len
end
function World:project(item, x,y,z,w,h,d, goalX,goalY,goalZ, filter)
assertIsCube(x, y, z, w, h, d)
goalX = goalX or x
goalY = goalY or y
goalZ = goalZ or z
filter = filter or defaultFilter
local collisions, len = {}, 0
local visited = {}
if item ~= nil then
visited[item] = true
end
-- This could probably be done with less cells using a polygon raster over the cells instead of a
-- bounding cube of the whole movement. Conditional to building a queryPolygon method
local tx = min(goalX, x)
local ty = min(goalY, y)
local tz = min(goalZ, z)
local tx2 = max(goalX + w, x + w)
local ty2 = max(goalY + h, y + h)
local tz2 = max(goalZ + d, z + d)
local tw = tx2 - tx
local th = ty2 - ty
local td = tz2 - tz
local cx,cy,cz,cw,ch,cd = grid_toCellCube(self.cellSize, tx,ty,tz, tw,th,td)
local dictItemsInCellCube = getDictItemsInCellCube(self, cx,cy,cz,cw,ch,cd)
for other,_ in pairs(dictItemsInCellCube) do
if not visited[other] then
visited[other] = true
local responseName = filter(item, other)
if responseName then
local ox,oy,oz,ow,oh,od = self:getCube(other)
local col = cube_detectCollision(x,y,z,w,h,d, ox,oy,oz,ow,oh,od, goalX, goalY, goalZ)
if col then
col.other = other
col.item = item
col.type = responseName
len = len + 1
collisions[len] = col
end
end
end
end
table.sort(collisions, sortByTiAndDistance)
return collisions, len
end
function World:countCells()
local count = 0
for _, plane in pairs(self.cells) do
for _, row in pairs(plane) do
for _,_ in pairs(row) do
count = count + 1
end
end
end
return count
end
function World:hasItem(item)
return not not self.cubes[item]
end
function World:getItems()
local items, len = {}, 0
for item,_ in pairs(self.cubes) do
len = len + 1
items[len] = item
end
return items, len
end
function World:countItems()
local len = 0
for _ in pairs(self.cubes) do len = len + 1 end
return len
end
function World:getCube(item)
local cube = self.cubes[item]
if not cube then
error('Item ' .. tostring(item) .. ' must be added to the world before getting its cube. Use world:add(item, x,y,z,w,h,d) to add it first.')
end
return cube.x, cube.y, cube.z, cube.w, cube.h, cube.d
end
function World:toWorld(cx, cy, cz)
return grid_toWorld(self.cellSize, cx, cy, cz)
end
function World:toCell(x,y,z)
return grid_toCell(self.cellSize, x, y, z)
end
-- Query methods
function World:queryCube(x,y,z,w,h,d, filter)
assertIsCube(x,y,z,w,h,d)
local cx,cy,cz,cw,ch,cd = grid_toCellCube(self.cellSize, x,y,z,w,h,d)
local dictItemsInCellCube = getDictItemsInCellCube(self, cx,cy,cz,cw,ch,cd)
local items, len = {}, 0
local cube
for item,_ in pairs(dictItemsInCellCube) do
cube = self.cubes[item]
if (not filter or filter(item))
and cube_isIntersecting(x,y,z,w,h,d, cube.x, cube.y, cube.z, cube.w, cube.h, cube.d)
then
len = len + 1
items[len] = item
end
end
return items, len
end
function World:queryPoint(x,y,z, filter)
local cx,cy,cz = self:toCell(x,y,z)
local dictItemsInCellCube = getDictItemsInCellCube(self, cx,cy,cz, 1,1,1)
local items, len = {}, 0
local cube
for item,_ in pairs(dictItemsInCellCube) do
cube = self.cubes[item]
if (not filter or filter(item))
and cube_containsPoint(cube.x, cube.y, cube.z, cube.w, cube.h, cube.d, x, y, z)
then
len = len + 1
items[len] = item
end
end
return items, len
end
function World:querySegment(x1, y1, z1, x2, y2, z2, filter)
local itemInfo, len = getInfoAboutItemsTouchedBySegment(self, x1, y1, z1, x2, y2, z2, filter)
local items = {}
for i = 1, len do
items[i] = itemInfo[i].item
end
return items, len
end
-- function World:querySegmentWithCoords(x1, y1, z1, x2, y2, z2, filter)
-- local itemInfo, len = getInfoAboutItemsTouchedBySegment(self, x1, y1, z1, x2, y2, z2, filter)
-- local dx, dy, dz = x2 - x1, y2 - y1, z2 - z1
-- local info, ti1, ti2
-- for i=1, len do
-- info = itemInfo[i]
-- ti1 = info.ti1
-- ti2 = info.ti2
-- info.weight = nil
-- info.x1 = x1 + dx * ti1
-- info.y1 = y1 + dy * ti1
-- info.x2 = x1 + dx * ti2
-- info.y2 = y1 + dy * ti2
-- end
-- return itemInfo, len
-- end
--- Main methods
function World:add(item, x,y,z,w,h,d)
local cube = self.cubes[item]
if cube then
error('Item ' .. tostring(item) .. ' added to the world twice.')
end
assertIsCube(x,y,z,w,h,d)
self.cubes[item] = {x=x,y=y,z=z,w=w,h=h,d=d}
local cl,ct,cs,cw,ch,cd = grid_toCellCube(self.cellSize, x,y,z,w,h,d)
for cz = cs, cs + cd - 1 do
for cy = ct, ct + ch - 1 do
for cx = cl, cl + cw - 1 do
addItemToCell(self, item, cx, cy, cz)
end
end
end
return item
end
function World:remove(item)
local x,y,z,w,h,d = self:getCube(item)
self.cubes[item] = nil
local cl,ct,cs,cw,ch,cd = grid_toCellCube(self.cellSize, x,y,z,w,h,d)
for cz = cs, cs + cd - 1 do
for cy = ct, ct + ch - 1 do
for cx = cl, cl + cw - 1 do
removeItemFromCell(self, item, cx, cy, cz)
end
end
end
end
function World:update(item, x2,y2,z2,w2,h2,d2)
local x1,y1,z1, w1,h1,d1 = self:getCube(item)
w2 = w2 or w1
h2 = h2 or h1
d2 = d2 or d1
assertIsCube(x2,y2,z2,w2,h2,d2)
if x1 == x2 and y1 == y2 and z1 == z2 and w1 == w2 and h1 == h2 and d1 == d2 then
return
end
local cl1,ct1,cs1,cw1,ch1,cd1 = grid_toCellCube(self.cellSize, x1,y1,z1, w1,h1,d1)
local cl2,ct2,cs2,cw2,ch2,cd2 = grid_toCellCube(self.cellSize, x2,y2,z2, w2,h2,d2)
if cl1 ~= cl2 or ct1 ~= ct2 or cs1 ~= cs2 or cw1 ~= cw2 or ch1 ~= ch2 or cd1 ~= cd2 then
local cr1 = cl1 + cw1 - 1
local cr2 = cl2 + cw2 - 1
local cb1 = ct1 + ch1 - 1
local cb2 = ct2 + ch2 - 1
local css1 = cs1 + cd1 - 1
local css2 = cs2 + cd2 - 1
local cyOut, czOut
for cz = cs1, css1 do
czOut = cz < cs2 or cz > css2
for cy = ct1, cb1 do
cyOut = cy < ct2 or cy > cb2
for cx = cl1, cr1 do
if czOut or cyOut or cx < cl2 or cx > cr2 then
removeItemFromCell(self, item, cx, cy, cz)
end
end
end
end
for cz = cs2, css2 do
czOut = cz < cs1 or cz > css1
for cy = ct2, cb2 do
cyOut = cy < ct1 or cy > cb1
for cx = cl2, cr2 do
if czOut or cyOut or cx < cl1 or cx > cr1 then
addItemToCell(self, item, cx, cy, cz)
end
end
end
end
end
local cube = self.cubes[item]
cube.x, cube.y, cube.z, cube.w, cube.h, cube.d = x2, y2, z2, w2, h2, d2
end
function World:move(item, goalX, goalY, goalZ, filter)
local actualX, actualY, actualZ, cols, len = self:check(item, goalX, goalY, goalZ, filter)
self:update(item, actualX, actualY, actualZ)
return actualX, actualY, actualZ, cols, len
end
function World:check(item, goalX, goalY, goalZ, filter)
local x,y,z,w,h,d = self:getCube(item)
return self:projectMove(item, x,y,z,w,h,d, goalX,goalY,goalZ, filter)
end
-- Public library functions
bump.newWorld = function(cellSize)
cellSize = cellSize or 64
assertIsPositiveNumber(cellSize, 'cellSize')
local world = setmetatable({
cellSize = cellSize,
cubes = {},
cells = {},
nonEmptyCells = {},
responses = {},
}, World_mt)
world:addResponse('touch', touch)
world:addResponse('cross', cross)
world:addResponse('slide', slide)
world:addResponse('bounce', bounce)
return world
end
bump.cube = {
getNearestCorner = cube_getNearestCorner,
getSegmentIntersectionIndices = cube_getSegmentIntersectionIndices,
getDiff = cube_getDiff,
containsPoint = cube_containsPoint,
isIntersecting = cube_isIntersecting,
getCubeDistance = cube_getCubeDistance,
detectCollision = cube_detectCollision
}
bump.responses = {
touch = touch,
cross = cross,
slide = slide,
bounce = bounce
}
return bump